Search results

Search for "flow sensing" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Bidirectional biomimetic flow sensing with antiparallel and curved artificial hair sensors

  • Claudio Abels,
  • Antonio Qualtieri,
  • Toni Lober,
  • Alessandro Mariotti,
  • Lily D. Chambers,
  • Massimo De Vittorio,
  • William M. Megill and
  • Francesco Rizzi

Beilstein J. Nanotechnol. 2019, 10, 32–46, doi:10.3762/bjnano.10.4

Graphical Abstract
  • Civile e Industriale, Pisa, I-56122, Italy 10.3762/bjnano.10.4 Abstract Background: Flow stimuli in the natural world are varied and contain a wide variety of directional information. Nature has developed morphological polarity and bidirectional arrangements for flow sensing to filter the incoming
  • sensor; biomimetics; flow direction; flow sensing; robotics; Introduction Biological lateral line organ Flow sensors in nature often have a morphological polarity, such as the hair cell sensors in the lateral line of fish [1], in jellyfish [2], arthropods [3][4] and crickets [5][6][7][8], as well as the
  • hair cells in audition of humans [9]. The lateral line of a fish is an intricate flow sensing network of individual sensors, called neuromasts, which are located on the surface and subsurface on the body of the fish. Over millions of years, two different types of neuromasts have evolved, canal and
PDF
Album
Full Research Paper
Published 03 Jan 2019

A new bioinspired method for pressure and flow sensing based on the underwater air-retaining surface of the backswimmer Notonecta

  • Matthias Mail,
  • Adrian Klein,
  • Horst Bleckmann,
  • Anke Schmitz,
  • Torsten Scherer,
  • Peter T. Rühr,
  • Goran Lovric,
  • Robin Fröhlingsdorf,
  • Stanislav N. Gorb and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2018, 9, 3039–3047, doi:10.3762/bjnano.9.282

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2018

Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals

  • Adrian Klein and
  • Horst Bleckmann

Beilstein J. Nanotechnol. 2011, 2, 276–283, doi:10.3762/bjnano.2.32

Graphical Abstract
  • calculated bulk flow velocities obtained from 7 adjacent neuromast pairs. Discussion There have only been a few attempts to design an engineering equivalent to the sensory hairs of insects and spiders [16][23]. These sensors were used for air flow sensing and for aerial acoustic perception [16][18
PDF
Album
Full Research Paper
Published 06 Jun 2011
Other Beilstein-Institut Open Science Activities